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Abstract

We present a hybrid cross-device localization pipeline de-
veloped for the CroCoDL 2025 Challenge. Our approach
integrates a shared retrieval encoder and two complemen-
tary localization branches: a classical geometric branch
using feature fusion and PnP, and a neural feed-forward
branch (MapAnything) for metric localization conditioned
on geometric inputs. A neural-guided candidate prun-
ing strategy further filters unreliable map frames based on
translation consistency, while depth-conditioned localiza-
tion refines metric scale and translation precision on Spot
scenes. These components jointly lead to significant im-
provements in recall and accuracy across both HYDRO and
SUCCU benchmarks. Our method achieved a final score of
92.62 (R@0.5m, 5°) during the challenge.

1. Method Overview

1.1. Unified Retrieval Encoder and Dual Localiza-
tion Branches

Both branches in our system share a single retrieval encoder
to leverage the same high-quality candidate set and avoid re-
dundant retrieval computations. We employ Megaloc [1] to
retrieve a set of top-k map frames from the global database,
providing the foundation for both localization paradigms.
In the classical geometric verification branch, the retrieved
candidates are used for feature-based localization. Each
query—map pair undergoes multi-descriptor fusion (Super-
Point [2], GIM-finetuned SuperPoint [6], DISK [7]) and
multi-matcher fusion (SuperGlue [5], LightGlue [4], GIM-
LightGlue [6]). The aggregated matches are passed to
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COLMAP PnP estimation to compute a precise camera pose
when sufficient inliers are available. In the neural metric lo-
calization branch, the same retrieved candidates are used as
geometric context inputs for MapAnything [3]. Before re-
localization, candidate frames are filtered by pose distance
to the query (<20 m translation threshold) to remove irrele-
vant large-baseline views. The remaining candidates, along
with their depth maps, intrinsics, and poses, are fed into
MapAnything [3] for feed-forward metric re-localization.

1.2. Feature Fusion Retrieval Pipeline

To improve retrieval robustness under cross-device and
cross-domain conditions, we design a feature fusion re-
trieval pipeline that aggregates complementary descriptors
and matchers before localization. The retrieval backbone
(Megal.oc [1]) provides global candidates, while our fusion
mechanism enhances local discriminability and resilience
to viewpoint or illumination changes. Specifically, we com-
bine multiple descriptors — SuperPoint [2], GIM-finetuned
SuperPoint [6], and DISK [7] — to capture both low-
level geometric structure and high-level semantic cues. For
matching, we integrate SuperGlue [5], LightGlue [4], and
GIM-LightGlue [6], each contributing distinct correspon-
dence priors. Matches are aggregated using a confidence-
weighted union, and duplicate correspondences are pruned
based on spatial consistency. This fusion pipeline leads to
stronger recall and higher matching reliability across het-
erogeneous camera domains. It also improves downstream
PnP estimation stability, serving as a bridge between global
retrieval and fine-grained pose estimation.

1.3. Hybrid Pose Estimation (PnP + MapAnything)

In practice, PnP may fail for cross-device cases due to in-
sufficient feature correspondences or calibration noise. We
therefore design a hybrid pose estimation scheme: when
PnP succeeds with a sufficient number of inliers (>120),
the query pose from the PPL pipeline (7)) is used; oth-
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Figure 1. Hybrid localization pipeline. Our system consists of two stages: mapping (top) and localization (bottom). During mapping, in-
put images are processed by keypoint detection (SuperPoint, GIM-finetuned SuperPoint, DISK) and feature matching modules to construct
the 3D map via triangulation. In the localization stage, MegaLoc retrieval selects the top-100 candidate map frames for each query from
the constructed map. The retrieved pairs are then processed by the classical branch (feature matching + RANSAC-PnP) and the neural
branch (MapAnything). A neural-guided map filtering step prunes candidate frames with large translation distances before re-localization.
Finally, a hybrid 6-DoF pose is produced by fusing PnP and neural predictions, achieving robust and accurate cross-device localization.

erwise, the pose is predicted by MapAnything (TqM 4 3]
This hybrid strategy guarantees coverage while maintaining
geometric consistency. The estimated pose (Tq) is then used
to guide map candidate filtering.

1.4. Neural-guided Candidate Pruning

Given the retrieved map frames {I;,T; = [R;|t;]} with
known accurate poses, and the query pose Tq estimated
from either PnP or MapAnything, we perform a neural-
guided pruning stage to discard geometrically inconsistent
maps. We compute translation distances d; = ||t, — t;|2
and retain a subset S = {i | d; < 20m}. Localiza-
tion is then re-run on the pruned set S using MapAny-
thing [3]. This hybrid strategy enhances robustness in large-

scale scenes, where excessive translation gaps between the
query and map frames may degrade feed-forward predic-
tions. It can be regarded as a neural-assisted geometric
verification: neural predictions guide candidate selection,
while geometric constraints ensure physical consistency.

1.5. Depth Conditioning and Filtering

For datasets that provide depth information (e.g., Spot), we
further incorporate depth maps to enhance metric scale es-
timation within MapAnything [3]. Each depth map is trans-
formed into the query camera coordinate system using the
known extrinsic parameters before being fed into the net-
work. This depth conditioning significantly improves the
accuracy of translation and absolute scale, reducing aver-
age translation error by a large margin. However, when



depth maps contain noise or inaccurate measurements, they
can introduce instability in rotation estimation. To mitigate
this, we perform depth filtering by removing pixels with in-
valid or outlier depth values before feeding them into Ma-
pAnything [3]. This step ensures that only reliable geomet-
ric cues contribute to the neural relocalization process, bal-
ancing scale precision and rotational stability across diverse
scenes.

Table 1. HYDRO

map
i0S HL Spot
iOS | 95.82% | 98.53% | 88.70%
query | HL | 93.87% | 98.69% | 95.40%
Spot | 90.69% | 97.39% | 98.88%
Table 2. SUCCU
map
i0S HL Spot
iOS | 86.38% | 87.70% | 80.56%
query | HL | 94.47% | 96.64% | 79.91%
Spot | 92.93% | 90.57% | 100.00%
Table 3. OVERALL
map
i0S HL Spot
iOS | 91.10% | 93.11% | 84.63%
query | HL | 94.17% | 97.66% | 87.66%
Spot | 91.81% | 93.98% | 99.44%

2. Results and Discussion

Our method achieved a final score of 92.62 on the HYDRO
and SUCCU datasets (R@0.5m). Multi-descriptor fusion
improved recall by 3 percentage points. Beyond quanti-
tative metrics, a key observation lies in the robustness of
MapAnything [3] under unseen or cross-device conditions.
When the query frame exhibits little or no visual overlap
with mapped regions, traditional PPL pipelines, which rely
on explicit feature correspondences and PnP estimation, of-
ten fail to recover a stable camera pose. In contrast, Ma-
pAnything [3] maintains geometric robustness by leverag-
ing geometric priors and multi-view consistency, inferring
plausible camera poses even when local feature matches are
sparse or noisy. This generalization ability to unseen scenes
complements the high precision of classical geometric rea-
soning, leading to a more reliable cross-device localization
framework overall.

3. Conclusion

We introduced a hybrid cross-device localization frame-
work combining traditional geometric pipelines and feed-
forward neural reconstruction. By coupling MapAnything-
based pose estimation with PnP-based localization and
neural-guided pruning, our system achieves strong robust-
ness, precision, and scalability across diverse devices and
scenes. The design demonstrates that neural metric geome-
try can complement classical geometric reasoning, bridging
the gap between structure-based and feed-forward localiza-
tion paradigms.
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